Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
1.
Protein Sci ; 33(5): e4978, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591637

RESUMO

The Ebola virus (EBOV) is a lipid-enveloped virus with a negative sense RNA genome that can cause severe and often fatal viral hemorrhagic fever. The assembly and budding of EBOV is regulated by the matrix protein, VP40, which is a peripheral protein that associates with anionic lipids at the inner leaflet of the plasma membrane. VP40 is sufficient to form virus-like particles (VLPs) from cells, which are nearly indistinguishable from authentic virions. Due to the restrictions of studying EBOV in BSL-4 facilities, VP40 has served as a surrogate in cellular studies to examine the EBOV assembly and budding process from the host cell plasma membrane. VP40 is a dimer where inhibition of dimer formation halts budding and formation of new VLPs as well as VP40 localization to the plasma membrane inner leaflet. To better understand VP40 dimer stability and critical amino acids to VP40 dimer formation, we integrated computational approaches with experimental validation. Site saturation/alanine scanning calculation, combined with molecular mechanics-based generalized Born with Poisson-Boltzmann surface area (MM-GB/PBSA) method and molecular dynamics simulations were used to predict the energetic contribution of amino acids to VP40 dimer stability and the hydrogen bonding network across the dimer interface. These studies revealed several previously unknown interactions and critical residues predicted to impact VP40 dimer formation. In vitro and cellular studies were then pursued for a subset of VP40 mutations demonstrating reduction in dimer formation (in vitro) or plasma membrane localization (in cells). Together, the computational and experimental approaches revealed critical residues for VP40 dimer stability in an alpha-helical interface (between residues 106-117) as well as in a loop region (between residues 52-61) below this alpha-helical region. This study sheds light on the structural origins of VP40 dimer formation and may inform the design of a small molecule that can disrupt VP40 dimer stability.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/genética , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Aminoácidos/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159464, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360201

RESUMO

The Ebola virus matrix protein VP40 is responsible for the formation of the viral matrix by localizing at the inner leaflet of the human plasma membrane (PM). Various lipid types, including PI(4,5)P2 (i.e. PIP2) and phosphatidylserine (PS), play active roles in this process. Specifically, the negatively charged headgroups of both PIP2 and PS interact with the basic residues of VP40 and stabilize it at the membrane surface, allowing for eventual egress. Phosphatidic acid (PA), resulting from the enzyme phospholipase D (PLD), is also known to play an active role in viral development. In this work, we performed a biophysical and computational analysis to investigate the effects of the presence of PA on the membrane localization and association of VP40. We used coarse-grained molecular dynamics simulations to quantify VP40 hexamer interactions with the inner leaflet of the PM. Analysis of the local distribution of lipids shows enhanced lipid clustering when PA is abundant in the membrane. We observed that PA lipids have a similar role to that of PS lipids in VP40 association due to the geometry and charge. Complementary experiments performed in cell culture demonstrate competition between VP40 and a canonical PA-binding protein for the PM. Also, inhibition of PA synthesis reduced the detectable budding of virus-like particles. These computational and experimental results provide new insights into the early stages of Ebola virus budding and the role that PA lipids have on the VP40-PM association.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Lipídeos/análise
3.
J Lipid Res ; 65(3): 100512, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295986

RESUMO

Ebola virus (EBOV) causes severe hemorrhagic fever in humans and is lethal in a large percentage of those infected. The EBOV matrix protein viral protein 40 kDa (VP40) is a peripheral binding protein that forms a shell beneath the lipid bilayer in virions and virus-like particles (VLPs). VP40 is required for virus assembly and budding from the host cell plasma membrane. VP40 is a dimer that can rearrange into oligomers at the plasma membrane interface, but it is unclear how these structures form and how they are stabilized. We therefore investigated the ability of VP40 to form stable oligomers using in vitro and cellular assays. We characterized two lysine-rich regions in the VP40 C-terminal domain (CTD) that bind phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and play distinct roles in lipid binding and the assembly of the EBOV matrix layer. The extensive analysis of VP40 with and without lipids by hydrogen deuterium exchange mass spectrometry revealed that VP40 oligomers become extremely stable when VP40 binds PI(4,5)P2. The PI(4,5)P2-induced stability of VP40 dimers and oligomers is a critical factor in VP40 oligomerization and release of VLPs from the plasma membrane. The two lysine-rich regions of the VP40 CTD have different roles with respect to interactions with plasma membrane phosphatidylserine (PS) and PI(4,5)P2. CTD region 1 (Lys221, Lys224, and Lys225) interacts with PI(4,5)P2 more favorably than PS and is important for VP40 extent of oligomerization. In contrast, region 2 (Lys270, Lys274, Lys275, and Lys279) mediates VP40 oligomer stability via lipid interactions and has a more prominent role in release of VLPs.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Lisina/metabolismo , Sítios de Ligação , Lipídeos , Ligação Proteica
4.
Nat Commun ; 14(1): 6785, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880247

RESUMO

Marburg and Ebola filoviruses are two of the deadliest infectious agents and several outbreaks have occurred in the last decades. Although several receptors and co-receptors have been reported for Ebola virus, key host factors remain to be elucidated. In this study, using a haploid cell screening platform, we identify the guanine nucleotide exchange factor CCZ1 as a key host factor in the early stage of filovirus replication. The critical role of CCZ1 for filovirus infections is validated in 3D primary human hepatocyte cultures and human blood-vessel organoids, both critical target sites for Ebola and Marburg virus tropism. Mechanistically, CCZ1 controls early to late endosomal trafficking of these viruses. In addition, we report that CCZ1 has a role in the endosomal trafficking of endocytosis-dependent SARS-CoV-2 infections, but not in infections by Lassa virus, which enters endo-lysosomal trafficking at the late endosome stage. Thus, we have identified an essential host pathway for filovirus infections in cell lines and engineered human target tissues. Inhibition of CCZ1 nearly completely abolishes Marburg and Ebola infections. Thus, targeting CCZ1 could potentially serve as a promising drug target for controlling infections caused by various viruses, such as SARS-CoV-2, Marburg, and Ebola.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Doença do Vírus de Marburg , Marburgvirus , Proteínas de Transporte Vesicular , Animais , Humanos , Ebolavirus/metabolismo , Lisossomos , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/metabolismo , Marburgvirus/metabolismo , Proteínas de Transporte Vesicular/metabolismo
5.
J Mol Biol ; 435(20): 168241, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598728

RESUMO

Viral inclusion bodies (IBs) are potential sites of viral replication and assembly. How viral IBs form remains poorly defined. Here we describe a combined biophysical and cellular approach to identify the components necessary for IB formation during Ebola virus (EBOV) infection. We find that the eNP0VP35 complex containing Ebola nucleoprotein (eNP) and viral protein 35 (eVP35), the functional equivalents of nucleoprotein (N) and phosphoprotein (P) in non-segmented negative strand viruses (NNSVs), phase separates to form inclusion bodies. Phase separation of eNP0VP35 is reversible and modulated by ionic strength. The multivalency of eVP35, and not eNP, is also critical for phase separation. Furthermore, overexpression of an eVP35 peptide disrupts eNP0VP35 complex formation, leading to reduced frequency of IB formation and limited viral infection. Together, our results show that upon EBOV infection, the eNP0VP35 complex forms the minimum unit to drive IB formation and viral replication.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Corpos de Inclusão , Nucleoproteínas , Replicação Viral , Humanos , Ebolavirus/metabolismo , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Corpos de Inclusão/virologia , Nucleoproteínas/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
6.
Biotechnol Lett ; 45(10): 1327-1337, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37526868

RESUMO

PURPOSE: Viruses, such as Ebola virus (EBOV), evolve rapidly and threaten the human health. There is a great demand to exploit efficient gene-editing techniques for the identification of virus to probe virulence mechanism for drug development. METHODS: Based on lambda Red recombination in Escherichia coli (E. coli), counter-selection, and in vitro annealing, a high-efficiency genetic method was utilized here for precisely engineering viruses. EBOV trVLPs assay and dual luciferase reporter assay were used to further test the effect of mutations on virus replication. RESULTS: Considering the significance of matrix protein VP24 in EBOV replication, the types of mutations within vp24, including several single-base substitutions, one double-base substitution, two seamless deletions, and one targeted insertion, were generated on the multi-copy plasmid of E. coli. Further, the length of the homology arms for recombination and in vitro annealing, and the amount of DNA cassettes and linear plasmids were optimized to create a more elaborate and cost-efficient protocol than original approach. The effects of VP24 mutations on the expression of a reporter gene (luciferase) from the EBOV minigenome were determined, and results indicated that mutations of key sites within VP24 have significant impacts on EBOV replication. CONCLUSION: This precise mutagenesis method will facilitate effective and simple editing of viral genes in E. coli.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Virais/genética , Doença pelo Vírus Ebola/genética , Ebolavirus/genética , Ebolavirus/metabolismo , Engenharia Genética , Recombinação Genética
7.
J Infect Dis ; 228(Suppl 7): S488-S497, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37551415

RESUMO

The 3' untranslated regions (UTRs) of Ebola virus (EBOV) mRNAs are enriched in their AU content and therefore represent potential targets for RNA binding proteins targeting AU-rich elements (ARE-BPs). ARE-BPs are known to fine-tune RNA turnover and translational activity. We identified putative AREs within EBOV mRNA 3' UTRs and assessed whether they might modulate mRNA stability. Using mammalian and zebrafish embryo reporter assays, we show a conserved, ARE-BP-mediated stabilizing effect and increased reporter activity with the tested EBOV 3' UTRs. When coexpressed with the prototypic ARE-BP tristetraprolin (TTP, ZFP36) that mainly destabilizes its target mRNAs, the EBOV nucleoprotein (NP) 3' UTR resulted in decreased reporter gene activity. Coexpression of NP with TTP led to reduced NP protein expression and diminished EBOV minigenome activity. In conclusion, the enrichment of AU residues in EBOV 3' UTRs makes them possible targets for cellular ARE-BPs, leading to modulation of RNA stability and translational activity.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Regiões 3' não Traduzidas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ebolavirus/genética , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/genética , Peixe-Zebra/metabolismo , Estabilidade de RNA/genética , Mamíferos
8.
Structure ; 31(9): 1038-1051.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37392738

RESUMO

The Ebola virus matrix protein VP40 mediates viral budding and negatively regulates viral RNA synthesis. The mechanisms by which these two functions are exerted and regulated are unknown. Using a high-resolution crystal structure of Sudan ebolavirus (SUDV) VP40, we show here that two cysteines in the flexible C-terminal arm of VP40 form a stabilizing disulfide bridge. Notably, the two cysteines are targets of posttranslational redox modifications and interact directly with the host`s thioredoxin system. Mutation of the cysteines impaired the budding function of VP40 and relaxed its inhibitory role for viral RNA synthesis. In line with these results, the growth of recombinant Ebola viruses carrying cysteine mutations was impaired and the released viral particles were elongated. Our results revealed the exact positions of the cysteines in the C-terminal arm of SUDV VP40. The cysteines and/or their redox status are critically involved in the differential regulation of viral budding and viral RNA synthesis.


Assuntos
Ebolavirus , Proteínas da Matriz Viral , Ebolavirus/genética , Ebolavirus/metabolismo , Mutação , Oxirredução , Sudão , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Humanos
9.
J Phys Chem B ; 127(29): 6449-6461, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37458567

RESUMO

The Ebola virus (EBOV) is a filamentous virus that acquires its lipid envelope from the plasma membrane of the host cell it infects. EBOV assembly and budding from the host cell plasma membrane are mediated by a peripheral protein, known as the matrix protein VP40. VP40 is a 326 amino acid protein with two domains that are loosely linked. The VP40 N-terminal domain (NTD) contains a hydrophobic α-helix, which mediates VP40 dimerization. The VP40 C-terminal domain has a cationic patch, which mediates interactions with anionic lipids and a hydrophobic region that mediates VP40 dimer-dimer interactions. The VP40 dimer is necessary for trafficking to the plasma membrane inner leaflet and interactions with anionic lipids to mediate the VP40 assembly and oligomerization. Despite significant structural information available on the VP40 dimer structure, little is known on how the VP40 dimer is stabilized and how residues outside the NTD hydrophobic portion of the α-helical dimer interface contribute to dimer stability. To better understand how VP40 dimer stability is maintained, we performed computational studies using per-residue energy decomposition and site saturation mutagenesis. These studies revealed a number of novel keystone residues for VP40 dimer stability just adjacent to the α-helical dimer interface as well as distant residues in the VP40 CTD that can stabilize the VP40 dimer form. Experimental studies with representative VP40 mutants in vitro and in cells were performed to test computational predictions that reveal residues that alter VP40 dimer stability. Taken together, these studies provide important biophysical insights into VP40 dimerization and may be useful in strategies to weaken or alter the VP40 dimer structure as a means of inhibiting the EBOV assembly.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Doença pelo Vírus Ebola/metabolismo , Ebolavirus/genética , Ebolavirus/metabolismo , Dimerização , Mutagênese , Lipídeos/química , Proteínas da Matriz Viral/química
10.
J Infect Dis ; 228(Suppl 7): S479-S487, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37119290

RESUMO

BACKGROUND: Our previous study demonstrated that the fruit bat (Yaeyama flying fox)-derived cell line FBKT1 showed preferential susceptibility to Ebola virus (EBOV), whereas the human cell line HEK293T was similarly susceptible to EBOV and Marburg virus (MARV). This was due to 3 amino acid differences of the endosomal receptor Niemann-Pick C1 (NPC1) between FBKT1 and HEK293T (ie, TET and SGA, respectively, at positions 425-427), as well as 2 amino acid differences at positions 87 and 142 of the viral glycoprotein (GP) between EBOV and MARV. METHODS/RESULTS: To understand the contribution of these amino acid differences to interactions between NPC1 and GP, we performed molecular dynamics simulations and binding free energy calculations. The average binding free energies of human NPC1 (hNPC1) and its mutant having TET at positions 425-427 (hNPC1/TET) were similar for the interaction with EBOV GP. In contrast, hNPC1/TET had a weaker interaction with MARV GP than wild-type hNPC1. As expected, substitutions of amino acid residues at 87 or 142 in EBOV and MARV GPs converted the binding affinity to hNPC1/TET. CONCLUSIONS: Our data provide structural and energetic insights for understanding potential differences in the GP-NPC1 interaction, which could influence the host tropism of EBOV and MARV.


Assuntos
Quirópteros , Ebolavirus , Doença pelo Vírus Ebola , Marburgvirus , Animais , Humanos , Proteína C1 de Niemann-Pick , Marburgvirus/metabolismo , Células HEK293 , Internalização do Vírus , Glicoproteínas/metabolismo , Ebolavirus/metabolismo , Aminoácidos
11.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047270

RESUMO

The Ebola virus (EBOV) is still highly infectious and causes severe hemorrhagic fevers in primates. However, there are no regulatorily approved drugs against the Ebola virus disease (EVD). The highly virulent and lethal nature of EVD highlights the need to develop therapeutic agents. Viral protein 40 kDa (VP40), the most abundantly expressed protein during infection, coordinates the assembly, budding, and release of viral particles into the host cell. It also regulates viral transcription and RNA replication. This study sought to identify small molecules that could potentially inhibit the VP40 protein by targeting the N-terminal domain using an in silico approach. The statistical quality of AutoDock Vina's capacity to discriminate between inhibitors and decoys was determined, and an area under the curve of the receiver operating characteristic (AUC-ROC) curve of 0.791 was obtained. A total of 29,519 natural-product-derived compounds from Chinese and African sources as well as 2738 approved drugs were successfully screened against VP40. Using a threshold of -8 kcal/mol, a total of 7, 11, 163, and 30 compounds from the AfroDb, Northern African Natural Products Database (NANPDB), traditional Chinese medicine (TCM), and approved drugs libraries, respectively, were obtained after molecular docking. A biological activity prediction of the lead compounds suggested their potential antiviral properties. In addition, random-forest- and support-vector-machine-based algorithms predicted the compounds to be anti-Ebola with IC50 values in the micromolar range (less than 25 µM). A total of 42 natural-product-derived compounds were identified as potential EBOV inhibitors with desirable ADMET profiles, comprising 1, 2, and 39 compounds from NANPDB (2-hydroxyseneganolide), AfroDb (ZINC000034518176 and ZINC000095485942), and TCM, respectively. A total of 23 approved drugs, including doramectin, glecaprevir, velpatasvir, ledipasvir, avermectin B1, nafarelin acetate, danoprevir, eltrombopag, lanatoside C, and glycyrrhizin, among others, were also predicted to have potential anti-EBOV activity and can be further explored so that they may be repurposed for EVD treatment. Molecular dynamics simulations coupled with molecular mechanics Poisson-Boltzmann surface area calculations corroborated the stability and good binding affinities of the complexes (-46.97 to -118.9 kJ/mol). The potential lead compounds may have the potential to be developed as anti-EBOV drugs after experimental testing.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Doença pelo Vírus Ebola/metabolismo , Proteínas Virais/metabolismo , Simulação de Acoplamento Molecular , Quimioinformática , Ebolavirus/metabolismo
12.
Acta Pharmacol Sin ; 44(7): 1487-1499, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36759643

RESUMO

Ebola virus (EBOV) causes hemorrhagic fever in humans with high morbidity and fatality. Although over 45 years have passed since the first EBOV outbreak, small molecule drugs are not yet available. Ebola viral protein VP30 is a unique RNA synthesis cofactor, and the VP30/NP interaction plays a critical role in initiating the transcription and propagation of EBOV. Here, we designed a high-throughput screening technique based on a competitive binding assay to bind VP30 between an NP-derived peptide and a chemical compound. By screening a library of 8004 compounds, we obtained two lead compounds, Embelin and Kobe2602. The binding of these compounds to the VP30-NP interface was validated by dose-dependent competitive binding assay, surface plasmon resonance, and thermal shift assay. Moreover, the compounds were confirmed to inhibit the transcription and replication of the Ebola genome by a minigenome assay. Similar results were obtained for their two respective analogs (8-gingerol and Kobe0065). Interestingly, these two structurally different molecules exhibit synergistic binding to the VP30/NP interface. The antiviral efficacy (EC50) increased from 1 µM by Kobe0065 alone to 351 nM when Kobe0065 and Embelin were combined in a 4:1 ratio. The synergistic anti-EBOV effect provides a strong incentive for further developing these lead compounds in future studies.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/genética , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/tratamento farmacológico , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Replicação Viral
13.
Proc Natl Acad Sci U S A ; 120(2): e2210690120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598950

RESUMO

The filovirus VP40 protein directs virion egress, which is regulated either positively or negatively by select VP40-host interactions. We demonstrate that host BAG3 and HSP70 recognize VP40 as a client and inhibit the egress of VP40 virus-like particles (VLPs) by promoting degradation of VP40 via Chaperone-assisted selective autophagy (CASA). Pharmacological inhibition of either the early stage formation of the VP40/BAG3/HSP70 tripartite complex, or late stage formation of autolysosomes, rescued VP40 VLP egress back to WT levels. The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of autophagy, and we found that surface expression of EBOV GP on either VLPs or an infectious VSV recombinant virus, activated mTORC1. Notably, pharmacological suppression of mTORC1 signaling by rapamycin activated CASA in a BAG3-dependent manner to restrict the egress of both VLPs and infectious EBOV in Huh7 cells. In sum, our findings highlight the involvement of the mTORC1/CASA axis in regulating filovirus egress.


Assuntos
Ebolavirus , Humanos , Ebolavirus/metabolismo , Transdução de Sinais , Macroautofagia , Vírion/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo
14.
Antiviral Res ; 209: 105491, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526073

RESUMO

In an effort to develop safe and innovative in vitro models for Ebola virus (EBOV) research, we generated a recombinant Ebola virus where the glycoprotein (GP) gene was substituted with the Cre recombinase (Cre) gene by reverse genetics. This defective virus could multiply itself in a complementary permissive cell line, which could express GP and reporter protein upon exogenous Cre existence. The main features of this novel model for Ebola virus are intact viral life cycle, robust virus multiplication and normal virions morphology. The design of this model ensures its safety, excellent stability and maneuverability as a tool for virology research as well as for antiviral agent screening and drug discovery, and such a design could be further adapted to other viruses.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/genética , Ebolavirus/metabolismo , Linhagem Celular , Glicoproteínas/genética , Replicação Viral , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
15.
Microscopy (Oxf) ; 72(3): 178-190, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-36242583

RESUMO

Filoviruses are filamentous enveloped viruses belonging to the family Filoviridae, in the order Mononegavirales. Some filovirus members, such as Ebola virus and Marburg virus, cause severe hemorrhagic fever in humans and non-human primates. The filovirus ribonucleoprotein complex, called the nucleocapsid, forms a double-layered helical structure in which a non-segmented, single-stranded, negative-sense RNA genome is encapsidated by the nucleoprotein (NP), viral protein 35 (VP35), VP24, VP30 and RNA-dependent RNA polymerase (L). The inner layer consists of the helical NP-RNA complex, acting as a scaffold for the binding of VP35 and VP24 that constitute the outer layer. Recent structural studies using cryo-electron microscopy have advanced our understanding of the molecular mechanism of filovirus nucleocapsid formation. Here, we review the key characteristics of the Ebola virus and Marburg virus nucleocapsid structures, highlighting the similarities and differences between the two viruses. In particular, we focus on the structure of the helical NP-RNA complex, the RNA binding mechanism and the NP-NP interactions in the helix. The structural analyses reveal a possible mechanism of nucleocapsid assembly and provide potential targets for the anti-filovirus drug design.


Assuntos
Ebolavirus , Marburgvirus , Animais , Microscopia Crioeletrônica , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Ebolavirus/química , Ebolavirus/metabolismo , Marburgvirus/química , Marburgvirus/metabolismo , Proteínas Virais/análise , Proteínas Virais/química , Proteínas Virais/metabolismo , RNA/análise , RNA/metabolismo
16.
Cell Rep ; 41(4): 111562, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288690

RESUMO

Infection by the Ebola virus, a member of the Filoviridae family of RNA viruses, leads to acute viral hemorrhagic fever. End-stage Ebola virus disease is characterized by a cytokine storm that causes tissue damage, vascular disintegration, and multi-organ failure. Previous studies showed that a shed form of the viral spike glycoprotein (sGP1,2) drives this hyperinflammatory response by activating Toll-like receptor 4 (TLR4). Here, we find that glycosylation is not required for activation of TLR4 by sGP1,2 and identify the internal fusion loop (IFL) as essential for inflammatory signaling. sGP1,2 competes with lipid antagonists of TLR4, and the IFL interacts directly with TLR4 and co-receptor MD2. Together, these findings indicate that sGP1,2 activates TLR4 analogously to bacterial agonist lipopolysaccharide (LPS) by binding into a hydrophobic pocket in MD2 and promoting the formation of an active heterotetramer. This conclusion is supported by docking studies that predict binding sites for sGP1,2 on TLR4 and MD2.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Receptor 4 Toll-Like/metabolismo , Ebolavirus/metabolismo , Lipopolissacarídeos/metabolismo , Glicoproteínas
17.
Commun Biol ; 5(1): 785, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927436

RESUMO

The envelope glycoprotein GP of the ebolaviruses is essential for host cell entry and the primary target of the host antibody response. GP is heavily glycosylated with up to 17 N-linked sites, numerous O-linked glycans in its disordered mucin-like domain (MLD), and three predicted C-linked mannosylation sites. Glycosylation is important for host cell attachment, GP stability and fusion activity, and shielding from neutralization by serum antibodies. Here, we use glycoproteomics to profile the site-specific glycosylation patterns of ebolavirus GP. We detect up to 16 unique O-linked glycosylation sites in the MLD, and two O-linked sites in the receptor-binding GP1 subunit. Multiple O-linked glycans are observed within N-linked glycosylation sequons, suggesting crosstalk between the two types of modifications. We confirmed C-mannosylation of W288 in full-length trimeric GP. We find complex glycosylation at the majority of N-linked sites, while the conserved sites N257 and especially N563 are enriched in unprocessed glycans, suggesting a role in host-cell attachment via DC-SIGN/L-SIGN. Our findings illustrate how N-, O-, and C-linked glycans together build the heterogeneous glycan shield of GP, guiding future immunological studies and functional interpretation of ebolavirus GP-antibody interactions.


Assuntos
Ebolavirus , Ebolavirus/metabolismo , Glicosilação , Mucinas/metabolismo , Polissacarídeos/metabolismo , Proteínas do Envelope Viral/metabolismo
18.
J Virol ; 96(18): e0090022, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36040180

RESUMO

Many negative-sense RNA viruses, including the highly pathogenic Ebola virus (EBOV), use cytoplasmic inclusion bodies (IBs) for viral RNA synthesis. However, it remains unclear how viral mRNAs are exported from these IBs for subsequent translation. We recently demonstrated that the nuclear RNA export factor 1 (NXF1) is involved in a late step in viral protein expression, i.e., downstream of viral mRNA transcription, and proposed it to be involved in this mRNA export process. We now provide further evidence for this function by showing that NXF1 is not required for translation of viral mRNAs, thus pinpointing its function to a step between mRNA transcription and translation. We further show that RNA binding of both NXF1 and EBOV NP is necessary for export of NXF1 from IBs, supporting a model in which NP hands viral mRNA over to NXF1 for export. Mapping of NP-NXF1 interactions allowed refinement of this model, revealing two separate interaction sites, one of them directly involving the RNA binding cleft of NP, even though these interactions are RNA-independent. Immunofluorescence analyses demonstrated that individual NXF1 domains are sufficient for its recruitment into IBs, and complementation assays helped to define NXF1 domains important for its function in the EBOV life cycle. Finally, we show that NXF1 is also required for protein expression of other viruses that replicate in cytoplasmic IBs, including Lloviu and Junín virus. These data suggest a role for NXF1 in viral mRNA export from IBs for various viruses, making it a potential target for broadly active antivirals. IMPORTANCE Filoviruses such as the Ebola virus (EBOV) cause severe hemorrhagic fevers with high case fatality rates and limited treatment options. The identification of virus-host cell interactions shared among several viruses would represent promising targets for the development of broadly active antivirals. In this study, we reveal the mechanistic details of how EBOV usurps the nuclear RNA export factor 1 (NXF1) to export viral mRNAs from viral inclusion bodies (IBs). We further show that NXF1 is not only required for the EBOV life cycle but also necessary for other viruses known to replicate in cytoplasmic IBs, including the filovirus Lloviu virus and the highly pathogenic arenavirus Junín virus. This suggests NXF1 as a promising target for the development of broadly active antivirals.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Proteínas de Transporte Nucleocitoplasmático , RNA Viral , Proteínas de Ligação a RNA , Antivirais , Ebolavirus/genética , Ebolavirus/metabolismo , Humanos , Corpos de Inclusão Viral/metabolismo , Corpos de Inclusão Viral/virologia , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
J Virol ; 96(17): e0108322, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993739

RESUMO

Ebola virus (EBOV) VP30 regulates viral genome transcription and replication by switching its phosphorylation status. However, the importance of VP30 phosphorylation and dephosphorylation in other viral replication processes such as nucleocapsid and virion assembly is unclear. Interestingly, VP30 is predominantly dephosphorylated by cellular phosphatases in viral inclusions, while it is phosphorylated in the released virions. Thus, uncertainties regarding how VP30 phosphorylation in nucleocapsids is achieved and whether VP30 phosphorylation provides any advantages in later steps in viral replication have arisen. In the present study, to characterize the roles of VP30 phosphorylation in nucleocapsid formation, we used electron microscopic analyses and live cell imaging systems. We identified VP30 localized to the surface of protrusions surrounding nucleoprotein (NP)-forming helical structures in the nucleocapsid, suggesting the involvement in assembly and transport of nucleocapsids. Interestingly, VP30 phosphorylation facilitated its association with nucleocapsid-like structures (NCLSs). On the contrary, VP30 phosphorylation does not influence the transport characteristics and NCLS number leaving from and coming back into viral inclusions, indicating that the phosphorylation status of VP30 is not a prerequisite for NCLS departure. Moreover, the phosphorylation status of VP30 did not cause major differences in nucleocapsid transport in authentic EBOV-infected cells. In the following budding step, the association of VP30 and its phosphorylation status did not influence the budding efficiency of virus-like particles. Taken together, it is plausible that EBOV may utilize the phosphorylation of VP30 for its selective association with nucleocapsids, without affecting nucleocapsid transport and virion budding processes. IMPORTANCE Ebola virus (EBOV) causes severe fevers with unusually high case fatality rates. The nucleocapsid provides the template for viral genome transcription and replication. Thus, understanding the regulatory mechanism behind its formation is important for the development of novel therapeutic approaches. Previously, we established a live-cell imaging system based on the ectopic expression of viral fluorescent fusion proteins, allowing the visualization and characterization of intracytoplasmic transport of nucleocapsid-like structures. EBOV VP30 is an essential transcriptional factor for viral genome synthesis, and, although its role in viral genome transcription and replication is well understood, the functional importance of VP30 phosphorylation in assembly of nucleocapsids is still unclear. Our work determines the localization of VP30 at the surface of ruffled nucleocapsids, which differs from the localization of polymerase in EBOV-infected cells. This study sheds light on the novel role of VP30 phosphorylation in nucleocapsid assembly, which is an important prerequisite for virion formation.


Assuntos
Ebolavirus , Nucleocapsídeo , Fatores de Transcrição , Proteínas Virais , Montagem de Vírus , Transporte Biológico , Ebolavirus/química , Ebolavirus/crescimento & desenvolvimento , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Nucleocapsídeo/biossíntese , Nucleocapsídeo/metabolismo , Fosforilação , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírion/química , Vírion/crescimento & desenvolvimento , Vírion/metabolismo
20.
PLoS Pathog ; 18(5): e1010530, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533151

RESUMO

Ebola virus (EBOV) causes highly pathogenic disease in primates. Through screening a library of human interferon-stimulated genes (ISGs), we identified TRIM25 as a potent inhibitor of EBOV transcription-and-replication-competent virus-like particle (trVLP) propagation. TRIM25 overexpression inhibited the accumulation of viral genomic and messenger RNAs independently of the RNA sensor RIG-I or secondary proinflammatory gene expression. Deletion of TRIM25 strongly attenuated the sensitivity of trVLPs to inhibition by type-I interferon. The antiviral activity of TRIM25 required ZAP and the effect of type-I interferon was modulated by the CpG dinucleotide content of the viral genome. We find that TRIM25 interacts with the EBOV vRNP, resulting in its autoubiquitination and ubiquitination of the viral nucleoprotein (NP). TRIM25 is recruited to incoming vRNPs shortly after cell entry and leads to dissociation of NP from the vRNA. We propose that TRIM25 targets the EBOV vRNP, exposing CpG-rich viral RNA species to restriction by ZAP.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Interferon Tipo I , Animais , Antivirais/metabolismo , Ebolavirus/metabolismo , Interferon Tipo I/metabolismo , Ribonucleoproteínas/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...